
EMSE-D-20-00026: Revision

Dear Editorial Office of Empirical Software Engineering,

We would like to submit a revision for our manuscript entitled “A comprehensive Study of
Bloated Dependencies in the Maven Ecosystem”. We thank the reviewers for their detailed
recommendations. We have addressed all their comments, which has improved the quality of our
manuscript.

In this revision:

• We assess the limitations of static analysis to address the comments 1.5 and 1.6 of Reviewer
#1. We add new results based on a new experiment where we run the test suite of the projects
to evaluate the impact of DepClean when detecting bloated dependencies.

• We clarify the methodological aspects about our experimental setup for analyzing bloated
dependencies, in particular when referring to the role of transitive dependencies.

• We add and discuss the missing references pointed out by Reviewer #1.

• We clarify the novel concepts in this manuscript with respect to our previous work related to
the Maven Dependency Graph (MDG).

• We updated the qualitative results to reflect the pull requests that were answered after the
submission of this paper, as suggested by Reviewer #2.

• We specify the number and types of the bloated dependencies in the Abstract and Conclusion
sections, to accurately present our results.

• We remove the part in the discussion that refers to the motivations of dependency analysis
for security, as suggested by Reviewer #3.

We have corrected all the minor remarks and typos that the reviewers brought to our attention.
In the following pages, we give detailed answers to each of the reviewers’ comments. The original

texts from the reviewers are included in boxes , our answers follow the boxes. All changes are
highlighted in blue in the resubmitted version of the manuscript (except typos).

In case of requiring any further information, please do not hesitate to contact us.

Sincerely yours,

César Soto-Valero

On behalf of Nicolas Harrand, Martin Monperrus, and Benoit Baudry

1

Reviewer #1

Comment 1.1 “How about not naming the dependencies ”bloated” (this has a connotation)
and instead just for what they are, unused? This also follows nomenclature of earlier work.”

We thank the reviewer for this suggestion. However, we believe that the term “bloated” applies
in the context of this work. The content of our manuscript is in line with the state-of-the-art
on software debloating, which the reviewer can consult in our updated living review on this
topic: https://www.cesarsotovalero.net/software-debloating-papers. Notice that the term

“bloated dependency” applies to both the unused dependencies that developers are aware of having
included in the dependency tree, and those that are added to the classpath based on the Maven’s
dependency management mechanism. We prefer to keep the term “bloated” to refer to all types of
unused dependencies.

Comment 1.2 “The abstract and conclusion draws too broad a conclusion based on the
number of transitive dependencies being unused. However, as the paper also elaborates, developers
largely do not have a direct influence on these. To draw an accurate instead of a misguiding,
sensationalist finding, at the very minimum, the number advertised in the abstract and conclusion
should differentiate between direct bloated and indirect bloated dependencies.”

We have addressed this comment by specifying the percentage of each type of bloat (bloated-
direct, bloated-inherited, and bloated-transitive) in the second paragraph of the Abstract and the
second paragraph of the Conclusion of the manuscript. Besides, we have clarified the distinction
between the number of direct and transitive dependencies removed, in the first sentences of the
Summary of RQ3 and RQ4 (pages 32 and 36), which provides a more accurate presentation of our
results.

Comment 1.3 “The article is missing two essential pieces of related work: [5] pre-empts the
idea of unused dependencies (albeit in the Rust ecosystem); [4] is the foundational work on the
security analysis mentioned in RW.”

We thank the reviewer for this remark. We have cited [5] in the Introduction section, and we
have referred to [4] and [5] in Section 7.1 (Related Work).

Comment 1.4 “This also reduces the claim of novelty somewhat, although to the best of my
knowledge, doing this study in the Java ecosystem and validating with developers is indeed novel.
(If one feels the need to stress this.)”

We found the work of Hejderup et al. [4] on vulnerable dependencies and its follow up paper [5]
relevant for our work. PRÄZI constructs a fine-grained call-graph dependency network for the Rust
ecosystem of libraries CRATES.IO. In [5], two applicable case studies on security vulnerability
propagation and deprecation impact analysis are presented. DepClean uses an approach in the
same spirit as the one implemented in PRÄZI. However, DepClean focuses on one specific problem:
bloated dependencies, and we evaluate the soundness of the analysis performed with DepClean
directly with developers through a qualitative study.

As far as we know, our study is the first that explores and consolidates the concept of bloated
dependencies in the Maven ecosystem. This work is novel because it includes: 1) a large scale
quantitative study of bloated dependencies, 2) a qualitative analysis of the feedback from developers

2

https://www.cesarsotovalero.net/software-debloating-papers

when suggesting the removal of such bloated dependencies, and 3) a tool that facilitates the detection
and removal of bloated dependencies in Maven projects. Consequently, we have kept our novelty
claims as we believe that a work similar to this in the Maven ecosystem has not been published
before. We have added a brief discussion about the relevance of our contributions with respect to
PRÄZI and other related works in the last paragraph of Section 7.1 (page 39).

Comment 1.5 “The criticism we received from reviewers is the fact that the Präzi analysis is
not fully sound. DepClean is not sound, either, as it is missing dynamic function calls. However,
there are excellent call graph generators that deal with this problem in Java (e.g., Wala). Why not
use one of these? For me, this is not a reason to not accept this article. However, 1) the threat
needs to be quantified extensively (at the minimum, have a look at Präzi for an inspiration on how
we tackled this, what about invoke dynamic, reflection) or 2) a different call graph generator has
to be used.”

We thank the reviewer for raising this technical limitation, which we have discussed thoroughly
in our manuscript (see last paragraph of Section 3.3.1, and Internal Validity in Section 6.2). We build
DepClean on top of the Maven dependency-analyzer [9], which is actively maintained by the Maven
team and officially supported by the Apache Software Foundation. The Maven dependency-analyzer
addresses various limitations and pitfalls of static analysis of Java bytecode. It internally uses
state-of-the-art bytecode analysis techniques that take into account some reflection mechanisms.
For example, it captures all the dynamic invocations created from class literals by parsing the
bytecodes in the constant pool of the classes. It also implements a customized bytecode parser that
allows the identification of reflection calls from particular Java constructs, from a project towards
its dependencies. However, it may still trigger false positives, which are due to native code, the
usage of Java reflection APIs, or the usage of the Unsafe API. To mitigate this threat, we have
added new configurable options to DepClean in order to ignore manually added dependencies or
Maven scopes from the analysis.

As suggested by the reviewer, we have added more details in the last paragraph of Section 3.3,
to explain the most important technical nuances of how DepClean handles dependency analysis in
the case of reflection, invoke dynamic, and other Java dynamic mechanisms. We have also improved
the description of its limitations in Section 6.2 (Threats to Validity).

Comment 1.6 “What about a strategy to flag a dependency as unnecessary when compiling
and executing tests works?”

We thank the reviewer for this suggestion. When we prepared the pull-requests for the 30
projects in our qualitative study, we checked as part of our protocol that we could build the projects
and successfully run the test suite, before running DepClean, as well as after generating a debloated
build file. We have made the explanation of this procedure more explicit in the third paragraph of
Section 4.2.2.

As a complementary validation of DepClean for this revision, we have performed new experiments
on 10 popular projects. For these experiments, we executed the test suite of the additional projects
with the version of the POM generated by DepClean, without bloated dependencies. The additional
results obtained are presented in Table 7 and discussed in Section 6.2. We have included the data of
these results as part of the complementary repository of this manuscript, which is available at https:
//github.com/castor-software/depclean-experiments/tree/master/ts-experiments.

We want to mention that, to validate DepClean using the testing strategy suggested by the
reviewer, we need to use Maven projects that satisfy various conditions: 1) we can build them
successfully, 2) they contain at least one bloated dependency, 3) they have a test suite that exercises
the API members of their dependencies. Also, it has to be noted that, even if the project compiles
and the tests pass, we cannot claim that the removed dependencies are not used with 100%

3

https://github.com/castor-software/depclean-experiments/tree/master/ts-experiments
https://github.com/castor-software/depclean-experiments/tree/master/ts-experiments

accuracy due to the limitations of bytecode analysis discussed previously and also due to other
limitations such as the presence of flaky tests. Our qualitative study and the feedback provided by
the developers of 30 Java projects aim to perform this type of validation.

Comment 1.7 “The article is very long. The concepts introduced in it are easy to grasp. I
recommend shortening, but also understand if the authors do not want to follow-up on this.”

We have shortened Section 2, keeping what we consider is essential for the readers that are not
familiar with Maven. We have also made an effort to reduce the size of Section 3, while consolidating
the key concepts that form the foundation of our work.

Comment 1.8 Introduction “To our knowledge there is no ...” Reference to Präzi? [5].

We added a reference to the work of Hejderup et. al. [5] in Section 1 (Introduction).

Comment 1.9 Introduction “mostly due to transitive dependencies” is unclear at this point.

We have clarified this sentence. We have edited the corresponding paragraph to make all the
sentences in the past tense.

Comment 1.10 p22 l48 This is a very nice message, however it needs to be more nuanced.
The default maven strategy is only suboptimal wrt. ensuring minimal dep inclusion. It might be
optimal wrt other aspects. This aspect is never picked up in the discussion.

We thank the reviewer for this remark. The Maven dependency resolution strategy, which
always picks the dependency that is nearest to the root of the tree [8], is a reasonable dependency
selection criterion. This approach has several benefits, for example, it makes it easier for developers
to control the dependency version used by declaring explicitly such dependency in the POM. It also
provides a more natural dependency version update, by prioritizing the update of dependencies
that are more likely to be used by the artifact (i.e., the root of the tree). We have clarified this
point in Section 5.1 (Results) and referred to it in Section 6.1 (Discussion).

Comment 1.11 p27 very Maven-specific. How would it generalize?

Section 5.2.2 compares single and multi-module artifacts with respect to their number of bloated
dependencies. We agree with the reviewer that the focus of this section is very Maven specific. We
found this relevant since very few papers study multi-module projects, although it is a widely used
architecture: 4,967 (51.5%) of artifacts in our dataset belong to multi-module projects.

This section is the result of our empirical observation when investigating the causes of dependency
bloat. We want to mention that nobody has ever reported that multi-module is one of the main
causes of bloat. Also, we want to notice that the construction of multi-module projects is not
specific of Maven. For example, Gradle projects can be also architecture in a modular manner. We
have clarified this in Section 5.2.2. We have also generalized the need of tools and user interfaces
to help developer manage their inherited dependencies.

4

Reviewer #2

Comment 2.1 “In the threats to validity section the authors mention as part of External
Validity to carry out a similar study for other package managers. However, I am wondering to which
extent this is easy to do. Java libraries in Maven are based on a statistically typed programming
language, while most other package managers are for dynamically typed languages (e.g. RubyGems
for Ruby, npm for JavaScript, Cargo for Rust, ...) The dynamic nature of these languages will make
the analysis much more challenging. I am also wondering to which extent the package metadata that
contains dependency information is different across ecosystems, and to which extent this will make
it more challenging to extend the analysis to other ecosystems. For npm packages in particular, the
metadata is represented in JSON files, with an explicit distinction between runtime dependencies,
development dependencies and optional dependencies. It is only the runtime dependencies that
will actually be part of the installation/deployment. Hence, because of this separation I suspect
that the phenomenon of bloated dependencies will be less prominent for npm and related package
managers. This is just an intuition, though.”

We agree with the intuition of the reviewer and share his/her thoughts about the challenges of
replicating our results on other ecosystems.

Comment 2.2 “The authors discuss at several points in the paper about Mavens dependency
resolution mechanism (which is based on the nearest-wins strategy), and discuss why this mechanism
is perhaps not the most optimal. It would have been nice if the authors could have provided concrete
recommendations or suggestions about what would be a better resolution mechanism (in terms of
benefits for reducing the amount of bloated dependencies which has been observed as being very
high). For example, on Page 28L4-6 the authors mention ”This calls for better tooling and user
interfaces” but they do not provide any insights on what such tooling should look like.”

We thank the reviewer for this remark. Today there is no way to test a build file, and POMs
are very verbose. In this manuscript, we call for tools to manage build files, which is the place
where developers handle their dependencies. The sentence: “this calls for better tools and user
interfaces...” refers to improving the Maven dependency resolution mechanism by integrating
the analysis of bloated dependencies as part of its resolution strategy, which will limit the bloat,
the conflicts, and therefore facilitate the dependency management. We have clarified this idea in
the last paragraph of Section 5.2.2. The analysis of concrete proposals to improve the resolution
strategy of Maven is out of the scope of this work. Our suggestion is that the dependency resolution
process should be highly customizable to meet the most specific user requirements. We do not
aim at rejecting the default dependency resolution mechanism of Maven but rather in using the
observation of bloated dependencies to make the reader notice that this mechanism is not optimal.
In particular, our focus is on the minimization of the number of dependencies included in the
classpath of the projects. We have clarified this point in Section 5.1 (Results) and referred to it in
Section 6.1 (Discussion).

Beyond the points above, which address the reviewer’s comment, we want to refer to the
nuances of the Maven dependency management strategy. Maven resolves version conflicts by picking
the dependency that is nearest to the root of the dependency tree [8]. This strategy is ordering
dependent, and keeping order in a very large dependency graph can be a challenge. For example,
it could happen that the dependencies of a newly added dependency change the order of the
dependency tree, altering the versions used and causing the so called dependency hell.

Furthermore, there exist several ways to handle dependency resolution, ranging from manually
selecting a specific version, or failing the resolution if there are several versions of the same
dependency. For example, by default, Gradle resolves dependency conflicts by prioritizing the
latest version of the dependency in the tree [6]. However, this strategy also has its own limitations,

5

since always favoring the latest versions could make projects more vulnerable to unknown bugs
or zero-day attacks. As another example, the Apache IvyTM [10] dependency manager is more
configurable, but this flexibility comes with the price of making dependency management hard to
reason about. These topics are out of the scope of this manuscript.

Comment 2.3 “I was wondering whether there are any other tools out there that are similar
to DepClean (either for Maven or for other package managers) to detect and resolve bloated
dependencies. I have not encountered the term ”bloated dependencies” before, but I know that
there are many tools available for dependency analysis in package managers (the tools tend to be
different for different package managers), so I would assume that there would be at least some
existing tool support for detecting unused dependencies. It would be nice if the authors could report
on this. If no such tools exist, it would make the message of the paper even stronger.”

There is no tool that is similar to DepClean, i.e., that analyzes the usage of direct and transitive
dependencies in Java artifacts. We are not aware of similar tools for other package managers,
with the exception of PRÄZI [5] for Rust. We have added a reference to PRÄZI in Section 1
(Introduction). In the Java ecosystem, the most related tool is the Maven dependency-analyzer
plugin [9]. However, it analyzes dependency usage only at one level, i.e., the direct dependencies. We
build DepClean with two main objectives: 1) to reason about dependency usages at the transitive
level and 2) to generate a version of the POM that can be used directly to remove or exclude
bloated dependencies.

Comment 2.4 “Is there a particular order in which these projects are listed? There does not
seem to be. I suggest to list them in a specific order, whathever the authors consider most appropriate.
E.g. ordered in decreasing number of commits, or stars, grouped by category, alphabetically ordered
by project, ...”

The projects are listed in decreasing order according to their number of stars on GitHub. We
have mentioned this in Section 4.2.2.

Comment 2.5 “Fig 12P24: Why does one observe star like patterns in the blue dots in this
figure? How can this phenomenon be explained? What does the color of the blue dots mean? Some
are darker and some are lighter ...”

The dot plot in Figure 12 shows the relation (in percentages) between the number of transitive
dependencies and the number of bloated dependencies. Each point represents an artifact in our
dataset. The number of dependencies in each artifact is a natural number n ∈ N. Therefore, when
computing the ratio of transitive dependencies that are bloated, the ratio of natural numbers
creates the visual effect of having a star-shaped figure.

We decreased the opacity of the blue dots in order to add a sense of density to the figure in the
presence of overlaps. We have mentioned this in Section 5.2.1 to facilitate the comprehension of
the figure.

Comment 2.6 “Fig 13P25: I would suggest to aggregate all cases for depth 9 together with
those for depth 10 or higher”

We have modified Figure 13 according to the suggestion of the reviewer.

6

Comment 2.7 “P32L16: For the * pending PRs, it seems that 1 or 2 more have been accepted
since the submission of this article.”

The observation of the reviewer is correct. Thanks for noticing it. We have updated the results to
reflect the three pull requests that have been accepted posterior to the submission of the manuscript.

Comment 2.8 “P36L10-24: I am not sure if this paragraph about security management is
really relevant or important. If yes, then why wasn’t it reported by any of the discussions where the
maintainers of those projects where pull requests were proposed ? Concerning the Equifax incident,
would the absence of bloated dependencies have been able to avoid this problem? I do not think
so...”

We have removed from the manuscript the paragraph that discusses the motivations of performing
dependency analysis for security. But we still want to mention to the reviewer that security is a
major concern for dependency management, as confirmed with our industrial partners.

Comment 2.9 “References: Make sure the paper titles have the correct capitalisations, currently
this is not the case for many references.”

We have addressed this comment by carefully reviewing and capitalizing the titles of all the
included references in the manuscript.

Reviewer #3

Major comments

Comment 3.1 Background: “The authors may restrict this section to explain the important
concepts in a paragraph.”

We have reduced the size of Section 2 (Background). However, we did not restrict this section to
a single paragraph because we do not assume that all the readers of Empirical Software Engineering
are familiar with build automation tools in general and Maven in particular. Furthermore, we
consider that Maven has some specific mechanisms that are essential to understand the content
of the manuscript, as well as some unique terminology that may not be necessarily known by all
readers. Therefore, in an effort to make this manuscript self-contained, we keep the definitions and
examples necessary to understand the concepts of dependency management and build automation
with Maven.

Comment 3.2 Bloated Dependencies: “In 3.1 the authors describe “Novel Concepts”. However,
the authors already published a paper about the Maven Dependency Graph (MDG) [1] which is
neither mentioned nor cited here. I’m a little confused because of that. Is this now a new novel
concept of the MDG? Does this definition vary from the original one? The authors need to clarify
this here., ...”

Thanks to the reviewer for noticing the missing references to our previous work on the MDG.
We have added a sentence at the beginning of Section 3 (Bloated Dependencies) that cites our
previous work and states its relation with this manuscript:

7

“The analysis of bloated dependencies relies on our previous work that introduces the
Maven Dependency Graph (MDG) [1].”

We have also refactored the introduction of Section 3 to make a clear distinction between the
MDG (previous work), and the novel concepts introduced in this manuscript.

Comment 3.3 Bloated Dependencies: “Figure 2 presents an example of the six types of
dependencies that the authors describe. However, compared to the initial presentation in Figure 1,
many edges changed. Especially the tree structure got lost and now all the edges start from the
root jxls-poi. I do not fully understand how and why this transformation was performed. Please,
give more detail and explain the necessary arguments”

Figure 1 in the manuscript presents an example of the Maven Dependency Tree (MDT)
corresponding to the Jxls Maven library. In a MDT, there is a single type of edge, which
represents the dependency relationship between each artifact (nodes) and its dependencies in the
tree. With this representation, there is no explicit distinction between direct, transitive, or inherited
dependencies, because the edges are not focused on the root artifact. There is also no distinction
between used of bloated dependencies.

On the other hand, Figure 2 in the manuscript represents a Dependency Usage Tree (DUT),
a novel concept that we described and formalized in Definition 4. We introduced this particular
DUT data structure to analyze the relationship between a single artifact (the root) and every
artifact that is present in its MDT. In a DUT, there are six types of edges, representing the type
of dependency relationship (direct, inherited, or transitive) and the usage status (used or bloated)
of the root node with respect to the rest of the nodes. Consequently, there are only arrows that go
from the artifact towards its dependencies (nodes) in the DUT.

For the purpose of our manuscript, this combination of usage and type of dependency is a
necessary information that allow us to reason about the different types of bloated dependencies.
According to the suggestion of the reviewer, we have added additional details when explaining the
construction of the DUT in Section 3.2 of the manuscript.

Comment 3.4 Bloated Dependencies: “Furthermore, the authors claim that a transitive de-
pendency which they classified as bt (bloated transitive dependency) can be removed. I’d argue
against that. Only because there is no direct call from the project to the transitive dependency, it
does not necessarily mean that the dependency is not used. It might be used transitively, of course.
This is even more critical as removing it may even cause runtime errors.

We consider a transitive dependency as bloated only if it is not used, whether explicitly via
a direct call from the artifact, or indirectly through a transitive call from its dependencies. We
determine the usage using static bytecode analysis, which is detailed in Algorithm 2. To do so,
DepClean constructs a DUT that determines all the dependencies used, directly or indirectly by a
Maven artifact.

For example, in Figure 1, when we determine if commons-logging is used by jxls-poi, we look
at all the possible direct calls to API member of commons-logging by jxls-poi, as well as all the
usages of commons-logging by the parts of commons-jexl that are used by jxls-poi, and all the
usages of commons-logging by the parts of commmons-jexl3 and the parts of commons-beanutils
that are used by jxls-poi. This way, we consider all the edges in the DUT from jxls-poi to
commons-logging, labelling the edges as bloated-transitive only if none of these artifacts use
commons-logging to provide to jxls-poi.

In other words, our analysis of dependencies considers usages along the path of the MDT, and
we characterize the usages on the DUT because the MDT does not have a concept that accumulates
usages over a complete path in the tree. With this type of analysis, we reduce to a minimum the

8

chances of causing runtime errors due to the removal of a necessary transitive dependency. We
have added a more detailed explanation about our analysis in Section 3.2 (Example).

Comment 3.5 Bloated Dependencies: Moreover, if it would be directly called from the project,
I’d even advocate to explicitly declare this dependency in the root project.

We agree with the reviewer on this regard: explicitly declaring all the used dependencies is a
good practice to mitigate dependency bloat. This is advocated by the official Maven guidelines [8]:

“Although transitive dependencies can implicitly include desired dependencies, it is a
good practice to explicitly specify the dependencies you are directly using in your own
source code. This best practice proves its value especially when the dependencies of your
project changes their dependencies.”

However, in practice, this recommendation is not always followed by developers due to several
reasons. For example, having all the dependencies in the POM produces a large build file that is
more difficult to understand and maintain. It also induces a considerable maintenance burden to
the projects, since dependencies will need to be updated one-by-one. According to the reviewer
suggestion, we have added this topic to the discussion in Section 6.1 of the manuscript.

Comment 3.6 Bloated Dependencies: The authors should reconsider this example, as it confuses
the reader a lot.”

We have completely reworked the description of how the MDT and the DUT complement each
other, sections 3.1 and 3.2. We have kept the original example, which grasps the richness of realistic
dependency trees in the Maven ecosystem.

Comment 3.7
Bloated Dependencies: “The authors state that DepClean only leaves the dependencies that are

currently needed, and removes directly declared unnecessary dependencies and excludes indirectly
declared unnecessary dependencies. While this might work for release revisions, I’m not sure whether
this is a good approach while implementing. Let’s say I’m using dependency A in my code which
depends on dependency B. I’m currently not using any code in A the makes B necessary. However,
I may use such code in the future in my project or A may change in a way that now B is necessary.
The authors need to describe also such cases as this might impact the applicability of the approach”

DepClean does not remove dependencies: it provides a report about bloated dependencies
and creates a variant of the POM with the minimum set of dependencies to build the Maven
project. DepClean does not perform any modifications to the source code, compiled bytecodes, or
configurations files in the project. We have clarified this in the first paragraph of Section 3.3 in the
manuscript.

Developers, who want to use DepClean, have to decide about how or where in their build pipeline
they use the tool. In particular, the removal of bloated dependencies during release revisions is an
appropriate method to use DepClean, which we have discussed with developers during our study.
We have discussed other possibles methodologies, such as running DepClean as part of security
audits or in the continuous integration pipeline to check only for direct bloated dependencies
(see the second paragraph of Section 5.3.2). There are undoubtedly other possible usage methods
and purposes. The systematic evaluation of these integration methods is out of the scope of this
manuscript.

9

Comment 3.8 Bloated Dependencies: “Additional remark to this: It would be interesting, how
many of the removed/excluded dependencies will later be added again because they are then
needed.”

We agree with the reviewer; it would be very interesting to perform a more extensive longitudinal
study along these lines. As a preliminary exploration of this topic, we have performed an initial
analysis to determine which dependencies were added to the project after being removed or excluded.
To do so, we have inspected the commit history of the POMs corresponding to the 30 projects
used for RQ3 and RQ4.
We analyzed the output of the following shell commands:

git log -p -U0 pom.xml |

grep "^+.*< artifactId >.*</ artifactId >$\|

^-.*<artifactId >.*</ artifactId >$" |

awk "{$1=$1;print}" |

sed "s/<artifactId >//" |

sed "s/<\/ artifactId >//"

Our preliminary results suggest that the declaration and removal of dependencies is very
dynamic in large projects, and developers indeed add dependencies that were previously removed
from the POM. A more extensive study on this topic involves the collection and analysis of a
large set of build files and its git history, which is out of the scope of this work. The GitHub
repository with our proof of concept tool to perform this kind of analysis is available at: https:
//github.com/castor-software/pomhist.

Comment 3.9 Experimental Protocols: “In (1), the authors describe that they randomly
sampled 14,699 Maven artifacts. First, I’d like to retrieve some more details than a plain reference
about the methodology how these 14,699 were selected. At least, please, sketch the way how this
selection has been performed.

Figure 1 compares the distribution of the original Maven Dependency Graph (MDG) dataset
and the sample of 14,699 used in our manuscript. As we can observe from this figure, the 1st-Q
and 3rd-Q are the same, which supports that our data is representative. This representativeness is
achieved by sampling over the probability distribution of the number of direct dependencies per
artifact in the MDG. According to the suggestion of the reviewer, we have added more details
about the data selection methodology in Section 4.2.1 of the manuscript.

For more details about the implementations of this sampling technique, we refer the reviewer
to the replication package: https://github.com/castor-software/depclean-experiments.

Comment 3.10 Furthermore, the authors need to explain why the number of dependencies
per artifact is a good measure for sampling the artifacts. Please, also describe why this number can
be safely assumed as a good representative measure.”

To our knowledge, the MDG is currently the largest representation of the Maven Central
ecosystem publicly available for research. In this graph, we were unable to compute the total
number of dependencies per artifact, i.e., direct and transitive dependencies, due to the high
computational cost of calculating all the individual connections corresponding to more than 2
million nodes in the graph. Even assuming that we have the computing power, we cannot ensure
than we count all the dependencies per artifact since many of them could be hosted in external
repositories other than Maven Central, or unavailable during the Maven dependency resolution
phase.

10

https://github.com/castor-software/pomhist
https://github.com/castor-software/pomhist
https://github.com/castor-software/depclean-experiments

Artifacts

100 100.5 101 101.5 102 102.5 103

Distribution of the complete MDG (2,407,335 artifacts)

Artifacts

100 100.5 101 101.5 102 102.5 103

#Dependencies (log)

Distribution of the sample (14,699 artifacts)

Figure 1: Distributions of the number of direct dependencies in the original MDG dataset of
2,407,335 artifacts, and the sample of 14,699 artifacts utilized in the manuscript.

Therefore, the number of direct dependencies per artifact, i.e., the number of outgoing edges
per node, is the most natural criterion for sampling the artifact in the graph. We believe this is
a good representative measure that fits the purpose and content of the paper because it reflects
the diversity of code reuse in the Maven ecosystem. In our previous work [11], we found a positive
correlation between the number direct dependencies and the number of transitive dependencies of
artifacts in Maven Central. We have added more details regarding the sampling measure in Section
4.2.1 of the manuscript.

Comment 3.11 Experimental Protocols: “The authors also describe additional criteria to
further filter projects. The second criterion states that all subjects have different groupId and
artifactId. Does that mean only one version of each artifact is considered (because different versions
of a project usually share groupId and artifactId)? If yes, which one and why? If no, please rephrase
this criterion as it might mislead the reader. Also the difference to the ”Latest” criterion is then
not fully clear.”

We considered only one version of each artifact. When filtering artifacts to construct our dataset,
we selected a single version per artifact belonging to the same groupId and artifactId. To select the
version, we ordered the versions of each artifact according to its published date as available from
Maven Central and selected the latest released version. This is explicitly stated in the bullet points
of Section 4.2.1 of the manuscript.

Comment 3.12 Experimental Protocols: “In the paragraph describing step (2), it is written
that artifacts that ended up with an error were discarded. According to the number of used artifacts
from the paragraph (1) which is 9,639, this never happened as the number of studied artifacts
remains the same in this paragraph. Did errors happen? If yes, how many happened and could that
impact the result?”

We thank the reviewer for this remark. The dataset of 9,639 artifacts is the result of applying
the filtering criteria described above, and removing the artifacts that depend on libraries hosted in
external repositories or that caused some errors when we download them. This happened for 131
artifacts in our sample. We have clarified this in Section 4.2.1 of the manuscript.

11

Comment 3.13 Experimental Protocols: “The authors also present statistics about the studied
subjects. They mention that it is interesting that the distribution of direct and transitive dependencies
are notably different. I’d argue that this is as expected. Imagine that you have only single dependency
that can have a large tail of transitive dependencies which again can have transitive dependencies
and so on. Obviously, this will lead to a much higher number of transitive dependencies. The
authors may rephrase this as, at least to me, this is not that interesting as it is sold.”

We thank the reviewer for this remark. We have lowered down the tone of this observation in
Section 4.2.1 of the manuscript, when describing the differences in the distribution of direct and
transitive dependencies in our dataset.

Comment 3.14 Experimental Protocols: “In (3), the authors describe how they decide whether
a dependency is used. Why did the authors use such an approach? Wouldn’t a simple slicing
technique suffice to retrieve the same results? The authors should at least describe that there are
different approaches possible, list some of them and describe the advantage of their approach over
the others.”

DepClean determines whether a dependency is used or bloated by constructing a static call
graph of Java bytecode, to collect direct and indirect usages from the artifact to its dependencies.
Indeed, the approach employed by DepClean can be seen as a form of slicing, where slices are
computed by backtracking usages between the artifact and its dependencies. We have provided an
extensive description of our approach in Section 3.3 of the manuscript.

Comment 3.15 Experimental Protocols: “The authors then describe the dependency usage
metrics. However, this paragraphs on page 15 confused me a lot. Many details are omitted here
and as this might be a main contribution of the paper I’d recommend to describe the contents in
more detail, for example answering the following questions:

• How is complexity of a Maven artifact measured? (Using only the height is not enough, also
because some conclusions are made with this metric in the further sections)

• How can the single/multi module nature contribute to the results?

• Which reuse strategies exist and are used?

• How are the other dependency heights categorized?

Currently, this part reads as a vague itemization of some metrics that are somehow measured and I
can currently not see how they contribute to answer the RQs.

We thank the reviewer for these valuable questions. We have refactored the description of the
dependency usage metrics in the manuscript. We have established a mapping between the metrics
described in section 4.2.1, and the corresponding figures in Section 5. We explained our criterion
for measuring complexity based on the height of the dependency tree, as well as the purpose of
measuring the difference between single and multi-module Maven projects.

Comment 3.16 Experimental Protocols: “In the Protocol of the Qualitative Study, the authors
select projects from GitHub. However, the selection criteria are given with no rationale. I’d expect
at least some argumentation why the respective criterion is important. For example, why did they
only select 30? Why 100 stars?”

12

We selected 30 open-source projects to conduct our qualitative analysis. The rationale of
choosing this number of projects, is as follows. First, we need a reasonable number of notable
open-source projects for which we can handle our pull requests and the discussion with their
developers. Second, the projects should satisfy several conditions: 1) are popular in GitHub, 2)
we can build them successfully, 2) contain dependencies, both used and bloated, 3) are actively
maintained. We refer to these criteria in Section 3.2.2 of the manuscript.

We considered the number of stars of a repository as a direct measure of its popularity. Stars are
the GitHub mechanism that provides a straightforward way for users to express their satisfaction
with an open-source project. Researches in empirical software engineering have used starts as a
measure to evaluate the popularity of projects [2, 12, 3]. We choose 100 as the minimum number
of starts, which constitutes a standard threshold of popularity for a GitHub project.

Comment 3.17 Experimental Results – 5.1 “In 5.1, it is stated that 75.1% of the dependencies
are bloated. I’m not sure how to deal with this number. The authors emphasize that this is a huge
number, which basically is correct, but if one looks at the detailed numbers, only 2.7% concern
the direct dependencies which in my opinion are the most important because developer should
intentionally declare their direct dependencies. While I see the argument of the authors to minimize
long tail of dependencies that comes with the transitive closure of dependencies, I disagree that
these are the important ones. The authors may want to improve their argumentation why the
transitive ones are more important. Also, the numbers presented below Figure 10 (e.g. the 86.2%)
are affected by this issue.”

We agree with the reviewer: direct-bloated dependencies are easier to handle by developers,
who only need to remove a few lines in the POM to get rid of them. However, notice that all the
dependencies, whether direct or transitive will end up in the released binaries of the artifact. The
effect of all the types of bloated dependencies are the same and consequently they are equally
unwanted, and the difference lies in that the transitive-bloated dependencies are more challenging
to remove and significantly more common. The pervasiveness of bloated-transitive dependencies
that we found is the principal reason that explains its importance. Following the recommendation
of the reviewer, we have made the distinction of the types of bloat explicit in the Abstract, Section
1 (Introduction), and Section 8 (Conclusions) of the manuscript.

Comment 3.18 Experimental Results – 5.1 “The authors also report on the detailed numbers
in this section. For example, the bloated-inherited dependencies are described as they would
only happen in multi-module projects. As far as I know the multi-module nature does not imply
inheritance of dependencies. To the best of my knowledge, inheritance in Maven-based systems is
given through the declaration of a parent project, which is not mandatory, neither in single module
projects, nor in multi module projects. The authors might clarify the text as this might be confusing
to the reader.”

Maven supports project aggregation in addition to project inheritance [7]. The reactor algorithm
defines the specifications for handling multi-module projects. The multi-module Maven architecture
provides two fundamental benefits for developers: 1) the ability to configure and customize the
execution of the distinct Maven build phases for a set of specific modules, and 2) the facility of
avoiding redundancy of POM configurations via inheritance, as in object-oriented programming,
from sub-modules to a parent POM.

The declaration of a parent project is an optional design decision of the software architects. It
does not necessarily imply the inheritance of dependencies. We have clarified this in Section 2.1 of
the manuscript.

13

Comment 3.19 Experimental Results – 5.1 “I appreciate that the authors also investigate the
used dependencies. For example, I think the finding that many used dependencies are actually
transitively declared dependencies is very interesting. The authors might highlight this finding more
as this has the potential impact on how developers should declare their dependencies (= if you
directly use an API, explicitly declare the dependency).”

We thank the reviewer for his/her interest in our findings regarding the usage of transitive
dependencies. When developing this study, we were surprised by the diverse ways in which
dependencies are used in practice. We have made and effort to present and discuss some interesting
dependency usage cases with the help of Listings 2 and 3 in the manuscript.

Comment 3.20 Experimental Results – 5.1 “Another important value that is missing in my
opinion concerns the number of bloated transitive dependencies that gets erased when removing
the 2.7% of directly declared bloated dependencies. How does this measure relate to the 75.1% of
bloated transitive dependencies?”

We thank the reviewer for this remark. In RQ3, we have quantified the number of bloated-
transitive dependencies that are removed as a result of removing bloated-direct dependencies. The
numbers are reported in the fourth column of Table 4. The last row of this table summarized the
acceptance rates: for the 25 bloated-direct dependencies removed, a total of 75 bloated dependencies
were removed, 50 of them are bloated-transitive.

Comment 3.21 Experimental Results – 5.2 “In this section, the authors describe the distribution
of the type of dependencies over all of their studied artifacts (Figure 11). I wonder what the take-aways
of this investigation are? Are some projects better than others because they declare more/less/other
types of dependencies? An explanation of the impact of these numbers is needed.”

We have added a paragraph to Section 5.2 of the manuscript that explains the practical impact
of the numbers presented in Figure 11.

Comment 3.22 Experimental Results – 5.2 “The same holds for Figure 12: This finding is
anticipated. If there are more dependencies at all, I assume that there will also be more bloated
dependencies. Please, put more emphasis on the practical applicability of this finding.”

The assumption of the reviewer is correct: more transitive dependencies imply more bloat in
general. However, this is not necessarily true for each artifact. The distribution of the number of
transitive dependencies per artifact varies greatly (see Figure 10). There are artifacts with more
than 1000 bloated-transitive, whereas most artifacts have between 2 and 41 (1st-Q and 3rd-Q),
with a median of 11 bloated-transitive dependencies. Consequently, the correlation is not obvious
for the reader (see the dispersion of artifacts in Figure 12).

Figure 12 ratifies the intuition of the reviewer and quantifies the impact of this phenomenon
statistically. According to the suggestion of the reviewer, we have put more emphasis on the
practical applicability of this finding in Section 5.2.1 of the manuscript.

Comment 3.23 Experimental Results – 5.2 “The same holds for Figure 13: Please, give some
examples of what one can learn from these numbers.”

14

Figure 13 shows the relation between the height of the dependency tree and the number bloated
dependencies. It shows a clear increasing trend of bloated-transitive dependencies as the height
of the dependency tree increases. We have presented and described, in Section 5.2.1, the artifact
org.wso2.carbon.devicemgt:org.wso2.carbon.apimgt.handlers:3.0.192 as an example of
this observation.

Comment 3.24 Experimental Results – 5.2 “In 5.2.2, the authors again try to find a relation
between the way of constructing the project (multi-module vs. single module) and the number of
bloated dependencies. Seeing the numbers, it seems that this has no impact on the number of
dependencies per module. The authors should make the point clear here as I’m confused what this
finding should convey. This holds for the whole RQ in my opinion. Ultimately, what the authors
found is that if there are more dependencies declared, the chances of bloated dependencies increase.
If the authors wanted to show a different effect, please describe this in more detail.”

In Section 5.2.2, we compare the distributions of bloated and used dependencies between
multi-module and single-module artifacts. The observation of the reviewer is correct: the Maven
modular architecture has no impact on the number of dependencies per module, as compared with
single-module artifacts. However, it does have an impact on the number of bloated dependencies
(see Figures 14 and 15). We have clarified this point in Section 5.2.2, and referred to the need of
tools and user interfaces to help developers manage their inherited dependencies.

This section is the result of our empirical observation when investigating the causes of dependency
bloat. At the initial stage of this research, we did not know that the multi-module Maven architecture
is one of the main causes of this type of bloat.

Comment 3.25 Experimental Results – 5.3 and 5.4 “Please, consider to refine the answers to
RQ3 and RQ4 as it may be misleading to see 68+63=131 removed dependencies in the results
sections and only the number 131 in the abstract. Same holds for the number of answered pull
requests.”

We have refined the answers to RQ3 and RQ4 in the manuscript as per this suggestion. We
have also made this distinction explicit in the Abstract. Notice that we have updated the number
of projects that answered our pull requests after the submission of the manuscript, according to
the suggestion of Reviewer #2.

Comment 3.26 Experimental Results – 5.3 and 5.4 “The results of these RQs confirm my
concern from above that the direct dependencies might be much more interesting than the transitive
dependencies. The authors should take this into account and maybe revise some of the result
descriptions in RQ1 and RQ2 based on these results.”

We have emphasized on the importance of bloated-direct dependencies in Section 5.1, by adding
a relevant sentence in the first paragraph of page 20 of the manuscript. This is also evidenced in
the results presented in Section 5.3.

Comment 3.27 Discussion: “The authors mention the possible impact of their work on security
aspects in the discussion. This has also already been mentioned in the introduction. While I agree
with the authors that their approach can help to avoid security vulnerabilities, the whole paper does
not investigate any security-related aspect it seems a little strange to again discuss this here. I’d
expect at least some more details on security relevant removed dependencies to justify the link.”

15

We have removed from the manuscript the paragraph that discusses the motivations of per-
forming dependency analysis for security. We still want to mention to the reviewer that we have
confirmed with our industrial partners the practical relevance of the study of security aspects for
better dependency management.

Minor remarks

All the typos pointed out by the reviewer have been corrected in the resubmitted version of our
manuscript.

References

[1] Amine Benelallam, Nicolas Harrand, César Soto-Valero, Benoit Baudry, and Olivier Barais.
The Maven Dependency Graph: a Temporal Graph-based Representation of Maven Central.
In 16th International Conference on Mining Software Repositories (MSR), Montreal, Canada,
2019. IEEE/ACM.

[2] Hudson Borges and Marco Tulio Valente. What’s in a GitHub Star? Understanding Repository
Starring Practices in a Social Coding Platform. Journal of Systems and Software, 146:112–129,
2018.

[3] Junxiao Han, Shuiguang Deng, Xin Xia, Dongjing Wang, and Jianwei Yin. Characterization
and Prediction of Popular Projects on GitHub. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC), volume 1, pages 21–26. IEEE, 2019.

[4] Joseph Hejderup. In Dependencies We Trust: How Vulnerable are Dependencies in Software
Modules? 2015.

[5] Joseph Hejderup. PRÄZI: From Package-based to Precise Call-based Dependency Network
Analyses. 2018.

[6] Gradle User Manual. Understanding Dependency Resolution. https://docs.gradle.org/

current/userguide/dependency_resolution.html, 2020. [Online; accessed 30-April-2020].

[7] Apache Maven Project. Guide to Working with Multiple Modules. http://maven.apache.

org/guides/mini/guide-multiple-modules.html, 2020. [Online; accessed 30-April-2020].

[8] Apache Maven Project. Introduction to the Dependency Mechanism. https://maven.apache.
org/guides/introduction/introduction-to-dependency-mechanism.html, 2020. [On-
line; accessed 30-April-2020].

[9] Apache Maven Project. The Maven Dependency Analyzer. http://maven.apache.org/

shared/maven-dependency-analyzer, 2020. [Online; accessed 30-April-2020].

[10] The Apache Ant Project. Apache Ivy. https://ant.apache.org/ivy, 2020. [Online; accessed
30-April-2020].

[11] César Soto-Valero, Amine Benelallam, Nicolas Harrand, Olivier Barais, and Benoit Baudry.
The emergence of software diversity in maven central. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR’19, pages 333 – 343. IEEE Press, 2019.

[12] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of Social and Technical Factors
for Evaluating Contribution in GitHub. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 356–366, New York, NY, USA, 2014. Association
for Computing Machinery.

16

https://docs.gradle.org/current/userguide/dependency_resolution.html
https://docs.gradle.org/current/userguide/dependency_resolution.html
http://maven.apache.org/guides/mini/guide-multiple-modules.html
http://maven.apache.org/guides/mini/guide-multiple-modules.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
http://maven.apache.org/shared/maven-dependency-analyzer
http://maven.apache.org/shared/maven-dependency-analyzer
https://ant.apache.org/ivy

